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Manipulation of Consonants in Natural Speech

Feipeng Li and Jont B. Allen, Life Fellow, IEEE

Abstract—Natural speech often contains conflicting cues that are
characteristic of confusable sounds. For example, the /k/, defined
by a mid-frequency burst within 1-2 kHz, may also contain a
high-frequency burst above 4 kHz indicative of /ta/, or vice versa.
Conflicting cues can cause people to confuse the two sounds in a
noisy environment. An efficient way of reducing confusion and
improving speech intelligibility in noise is to modify these speech
cues. This paper describes a method to manipulate consonant
sounds in natural speech, based on our a priori knowledge of per-
ceptual cues of consonants. We demonstrate that: 1) the percept
of consonants in natural speech can be controlled through the
manipulation of perceptual cues; 2) speech sounds can be made
much more robust to noise by removing the conflicting cue and
enhancing the target cue.

Index Terms—Conflicting cue, perceptual cue, speech pro-
cessing.

1. INTRODUCTION

FTER a half century of study, many speech processing
A techniques such as synthesis, noise reduction, and auto-
matic speech recognition (ASR), have reached a plateau in per-
formance. For example, the performance of the state-of-the-art
ASR systems is still far below that of human speech recognition
(HSR) [18]. A major problem is that it is fragile under noisy
conditions. The best phone classification accuracy in ASR sys-
tems varies from 82% in quiet [35] to chance performance at
0 dB signal-to-noise ratio (SNR). For HSR, the average phone
classification accuracy in quiet is near 98%-98.5% (1.5%-2%
error) [3], [4], while the SNR required for chance performance
is below —20-dB SNR [50]. For many sounds, the phone clas-
sification performance in humans is unchanged from quiet to
0-dB SNR [51] in white noise. In the past, ASR research has
benefited significantly from HSR research. For instance, the
use of delta Mel-frequency cepstral coefficients (MFCCs) as
the feature vector was rationalized by the perceptual study on
time-truncated syllables [30]. It is now widely accepted that
bio-inspired speech processing schemes have the potential to
lead to better solutions for noise-robust speech recognition [53],
[18], [34] and other applications.
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Perhaps ASR performance will improve if we can answer the
fundamental question of HSR: How is the speech coded in the
auditory system? In order to determine the basic speech spec-
tral patterns, in 1952, Cooper and Liberman and their colleagues
built a machine called the pattern playback that generated arti-
ficial speech from spectrograms, and then went on to conduct
a classic series of psychoacoustic studies on the perception of
synthetic stop consonants [14], [16]. Later, the method of speech
synthesis was widely used in the search for acoustic correlates
for stops [10], [37], fricatives [36], [33], nasals [46], [43], [54],
and distinctive or articulatory features [11], [12], [61]. A major
drawback of this method is that to synthesize speech, it requires
the experimenter to have know a priori knowledge about the
speech cues to be identified. In fact, the speech stimuli gener-
ated by the speech synthesizers, such as pattern playback, are
generally of low quality, even barely intelligible, because the
assumptions about the features are either incomplete or inaccu-
rate. To identify cues in natural speech, it is necessary to have a
direct way of measuring them. Of course, this has been the dif-
ficult challenge. [10], [11], [18], [19], [37]

To understand how speech information is represented in the
human auditory system, a number of researchers have studied
the recordings of single auditory neurons in animals in response
to speech stimuli [19], [58]. Since it has been unethical to record
in the human auditory nerve, and it is difficult to do exten-
sive speech psychophysics in nonhuman animals, those afore-
mentioned neurophysiological studies were unable to be corre-
lated with human psychophysical data. We have dealt with this
problem by creating a computational model of speech recep-
tion, called the Al-gram [45], [55], by integrating Fletcher’s Ar-
ticulation Index (AI) model of speech intelligibility [29], [27],
[39], [2] and a simple linear auditory model filter-bank (i.e.,
Fletcher’s critical-band SNR model of detection [3]). Given a
speech sound in noise, the Al-gram provides an initial esti-
mate of audibility of various time—frequency components in the
central auditory system. However, just because a component
is audible does not mean it is information bearing. We have
found that large portions of audible speech are not informa-
tion-bearing. When these portions are removed, the quality or
timbre of the speech changes, but not the conveyed meaning.
To address this issue, a systematic psychoacoustic method, de-
noted the three-dimensional deep search (3DDS), has been de-
veloped to identify true information-bearing events [41], [7].
The core idea behind 3DDS is to systematically remove var-
ious parts of a speech sound and then to assess the importance
of the removed component from the change in the recognition
score. In order to measure the distribution of speech informa-
tion along the time, frequency, and amplitude dimensions, three
different and independent psychoacoustic experiments are per-
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formed on each speech token. Each experiment consists of one
of the following independent methods: 1) speech sounds are
truncated in time; 2) high-/low-pass filtered in frequency; 3)
masked with white noise. The modified sound stimulus is pre-
sented to a battery of about 20 normal hearing listeners, with
trials randomized across utterances and conditions [7], [41],
[42]. Once an event is removed through time-truncating, fil-
tering and masking, the recognition score of human listeners
drops abruptly [55], [41]. As a quantitative way of measuring
speech cues, the 3DDS has at least two major advantages over
the conventional methods [14], [16], [11]. First, 3DDS uses nat-
ural speech; thus, the method makes no tacit assumption about
the relevant cues. Second, it harnesses the large variability of
natural speech. More than 18 talkers and listeners are employed
in each of the three experimental procedures to carefully sample
talker-listener space. The information from the three experi-
ments was then combined to create a single estimate of each
event. This approach has proven successful when applied to ini-
tial consonant—vowel (CV) sounds for both plosives [41] and
fricatives [7], [48].

We have discovered that naturally produced consonants
often contain conflicting cues, which are the sources of conso-
nant confusions [42], once the dominant cues that define the
target sounds are masked. Through the manipulation of the
dominant/conflicting cues, usually just a small time—frequency
region in the Al-gram, we can morph one phone into another,
demonstrating that speech perception is critically dependent on
these perceptual cues. Moreover, the robustness (intelligibility)
of consonants in noise is determined by the relative intensity of
the perceptual and conflicting cues [41].

These observations of HSR impose important implications
for both automatic speech recognition and speech enhancement;
first, a perceptual-cue-based processing scheme might provide
improved robustness or intelligibility of consonants in noise.
As we mentioned earlier, current ASR systems fail with even
small amounts of masking noise that have little or no impact on
HSR. Many researchers believe that it is because the front-end
does not resolve the features that are resilient to ambient noise.
Second, the existence of conflicting cues in natural speech fur-
ther complicates the training of ASR systems. Over the past
years, various noise-reduction techniques have been proposed
to increase the SNR [22], [40], but none of these methods have
been shown to be effective in improving speech intelligibility
[8], [9]. A more effective way might be to work directly with
the perceptual cues.

Here we present a method of manipulating consonant sounds
in natural speech, based on our a priori knowledge of perceptual
cues of consonants [41], [48], and demonstrate its potential use
for noise-robust speech recognition. The paper is organized as
follows. Section II gives an overview of the perceptual cues for
consonant sounds. Section III shows how the percept of natu-
rally produced consonants may be manipulated through the op-
erations on acoustic cues. Section IV tests the idea of noise-ro-
bust consonant recognition with a psychoacoustic experiment,
and in Section V we summarize our findings and discuss the
limitations of our current method.
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II. PERCEPTUAL CUES OF CONSONANT SOUNDS

In natural speech, due to the physical constraints on the ar-
ticulators (mouth, tongue, lips, etc.), it is widely accepted that
their “ideal” position are often compromised due to neighboring
sounds (e.g., a V on a C). As a consequence, speech cues of suc-
cessive {C, V} units frequently interact, an effect called coartic-
ulation [28]. Since coarticulation does not extend beyond neigh-
boring syllables, it is allowable to separate continuous speech
into syllable segments, such as CV or CVC [49].

Using the 3DDS method, we have identified the perceptual
cues of initial consonants preceding vowel /a/, /i/, and /u/ [42],
[48], [7].

A. Overview of Consonant Cues

Fig. 1 depicts the Al-grams of 16 consonants preceding
vowel /a/, with the dominant perceptual cues highlighted by
the rectangular frames. The stop consonants /p, t, k, b, d, g/ are
characterized by a compact burst of short duration (less than
15 ms) caused by the sudden release of pressure in the oral
cavity. Within the same group, the stop consonants distinguish
themselves by the center frequency of the burst, specifically /ta/
and /da/ are labeled by a high-frequency burst above 4 kHz; /ka/
and /ga/ are defined by a mid-frequency burst from 1.4-2 kHz,
whereas /pa/ and /ba/ are represented by a soft wide-band
click, which often degenerates into a low-frequency burst from
0.7-1 kHz due to the masking effect of surrounding noise. The
voiced and unvoiced stops differ mainly in the duration of the
gap between the burst and the start of sonorance. The fricatives
/£, J, 4, v, 2, 3, &/ are characterized by a salient noise-like
cue caused by the turbulent air flow through constrictions in
the lips, teeth and palate. Duration and bandwidth are two key
parameters for the discrimination of these sounds. Specifically,
the /fa/ cue is within 1-2.8 kHz and lasts for about 80 ms; the
/sa/ cue falls within 4-8 kHz and lasts for about 160 ms; /fal i
also labeled by a cue of long duration, but it has a lower fre-
quency (2—4 kHz); the /2/ cue ranges from 2-8 kHz and lasts
for more than 100 ms. These results are summarized from [41],
[48]. The voiced fricatives have similar patterns of perceptual
cues, except that the durations are considerably shorter than
their unvoiced counterparts. The two nasals /m/ and /n/ share a
common feature of nasal murmur at low frequency and differ
from each other in their mid/low-frequency timing and F2 onset
(below 2.4 kHz).

These invariant consonant cues have been found to be sys-
tematic across talkers. Similar 3DDS data for two other vowels
/i/ and /u/ is currently being analyzed. In running speech, the
acoustic cues are expected to change depending on the pre-
ceding and following vowels [14].

B. Conflicting Cues

Due to the physical limitations of the human speech articu-
lators, it is difficult to produce “ideal” speech sounds, such as
those generated by a speech synthesizer. We have found that
many natural CV sounds contain conflicting cues indicative of
competing sounds. Our analysis of the Linguistic Data Consor-
tium (LDC) LDC2005S22 “Articulation Index Corpus” (Uni-
versity of Pennsylvania) indicates that most stop consonants /pa,
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Fig. 1. Al-grams for the 16 Miller—Nicely consonants at 12-dB SNR in white noise. (a) Stops. (b) Fricatives. (c) Nasals. All sounds are pronounced by female
talker £103 except for /fa/, which is produced by talker f101. A rectangular frame highlights the perceptual cue that distinguishes each sound from its competing
sounds, as determined by the 3DDS procedure [42], [7]. The conflicting cues are labeled by ellipses. These Al-grams form a baseline starting point for speech
modifications of the boxed regions. (1 cs = 0.01 s). (a) Stops: /ta, ka, pa, da, ga, ba/. (b) Fricatives: /fa, sa, [a, {fa, va, za, 3a,dsa/ (c) Nasals: /ma, na/.

ta, ka, ba, da, ga/ contain combinations of consonant cues that
may lead to confusions in speech perception under adverse cir-
cumstances. As an example, /ka/ from talker f103 is shown in
Fig. 1(a). The talker (f103) intends to produce a /ka/ phone, and
the listeners report hearing /ka/ 100% of the time at 0 dB in
both white noise (WN) and speech weighted noise (SWN) and
a notable 98% of the time at —10-dB SNR in SWN. Yet, the
produced speech contains both a high-frequency burst around
5 kHz (indicative of a /ta/ production) and a low-frequency burst
spanning 0.4-0.7 kHz (indicative of a /pa/ production), as indi-
cated by the circles in the figure. When these two conflicting
cues are digitally removed, one hears no difference between the
modified sound and the original sound. In this example, the lis-
teners report a robust /ka/ because the mid-frequency /ka/ burst
(highlighted by a rectangular box) perceptually “overpowers”
the conflicting cues. Exactly how this happens is not understood,
but it is a result of cochlear and neural processing of the au-
ditory nerve signal. This effect is shown for /ga/ in Fig. 1(a).

In addition to the typical /ga/ burst in the mid-frequency (high-
lighted by a rectangular box), this speech sample also contains
a high-frequency burst above 4 kHz (labeled by a circle), which
could result in a /ga/—/da/ confusion, if the /g/ burst is masked
or removed.

Conflicting cues also exist in fricative consonants. As seen in
Fig. 1(b), the fricative time section of /fal also contains a /sa/
cue above 4 kHz (labeled by an ellipse). Similarly, within the
fricative time section of /sa/ we also see the perceptual cue for
/zal. Apart from these examples, /53, Ja, Y, za, 3a/ 3]] contain a
high-frequency burst above the head of the F3 transition (labeled
by ellipses); this cue, if presented alone, could lead to the per-
ception of /da/. As before, if the conflicting cue is removed, the
sound is literally indistinguishable from the unmodified speech.

Because of the existence of conflicting cues, the percept of a
sound predictably changes if the dominant cue is masked. This
effect is further described in Section III, where we discuss the
manipulation of consonants in natural speech.
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Fig. 2. Three-way manipulation of unvoiced stop consonant /ka/. (a) Original
/ka/ from talker f103 at 12-dB SNR. (b) When the two conflicting cues (blocks
2 and 3) are removed, one hears no difference. (c) When block 1, containing the
/k/ cue, is removed and the /t/ cue (block 2) is enhanced by 6 dB, a /t/ is robustly
reported. (d) When both the /k/ and /t/ cues are removed (blocks 1 and 2), /pa/
is robustly reported. [Example: “ka—ka—ta—pa”]. (1 cs = 0.01 s).

III. MANIPULATION OF SPEECH CUES

Speech perception is a complex multilevel process where
the integration of events is governed by high-level language
such as lexical, morphological, syntactic, and semantic context.
To manipulate phones in natural speech, it is convenient to
start from nonsense syllables, so that the high-level constraints
on speech perception are maximally controlled [5]. We first
examine the manipulation of initial consonants as they occur
in isolated nonsense CV syllables. We then show that speech
cues may be modified in isolated meaningful syllables (words)
and sentences. The examples discussed in this report can be
found at http://hear.ai.uiuc.edu/wiki/Files/VideoDemos. For
example, the sample “ka—ka—ta—pa” from Fig. 2 is listed
as “ka2ka2ta2pa” on the website.

Our speech modification procedure begins by analyzing the
speech sounds using the short-time Fourier transform (STFT).
The boxed regions of Fig. 1 are modified, and the modified
speech is then returned to the time domain via an overlap-add
synthesis [1].

A. Speech Analysis and Synthesis

Let s[n] denote the speech signal at sample times n. For anal-
ysis, the original signal s[n] is divided into N point overlapping
frames s[m,n] = w[n]sjmR — n] of 20-ms duration with a
step size R = N/4 samples of 5 ms. A Kaiser window w|n]
having —91 dB attenuation (i.e., first side lobe is 91 dB smaller
than the main lobe) is used. Note that the speech is time-reversed

499

and shifted across the fixed window prior to being Fourier trans-
formed

N—-1

Z s[m,n]e_ﬂ”k"/N. )

n=0

X[m, k] =

The resulting STFT coefficients X [m, k] is a two-dimensional
complex signal matrix, indexed in time m and frequency k.

The region of a speech cue is modified by multiplying
X|[m, k] with a two-dimensional mask M [, k| that specifies
the gain g within the feature area. Specifically, g = 0 is feature
removal, a gain 0 < g < 1 corresponds to a feature attenuation,
while a gain ¢ > 1 is feature enhancement, resulting in the
modified speech spectrum

Y[m, k] = X[m, k] - M[m, k]. )

The gain may be expressed in dB as G = 20xlog((g) dB. Fol-
lowing modifications, the single frame signal can be recovered
by applying an inverse Fourier transform

N-1

1 .
ylm,n] = 5 > Ylm, Ke> /N 3)
k=0

followed by the overlap add (OLA) synthesis, resulting in the
modified speech signal y[n]

0

= 2

=— My

yln] y[mR,n] ©)

over all past samples [1].
To improve the accuracy of modification, the windowed
speech is zero-padded before performing the Fourier transform.

B. Nonsense Syllable

1) Plosives: To demonstrate that the unvoiced stop conso-
nants /pa/, /ka/, and /ta/ can be converted from one to the other
(because of the conflicting cues), we select a /ka/ from talker
f103, the same example discussed in Section II-B. Using the
signal processing method described in Section III-A, we modify
the speech by varying the relative levels of three speech cues
(highlighted by the three blocks in Fig. 2). When the mid-fre-
quency /ka/ burst in block 1 is removed [Fig. 2(a)], the percept
of /ka/ is dramatically changed and listeners report either /pa/
or /ta/. This ambiguous situation leads to priming, which is de-
fined as the auditory illusion where prior expectation of the per-
ceived sound affects the sound reported. In other words, for this
illusion a listener can consciously switch between two or more
choices thus predecide the consonant being heard. When both
short bursts for /ka/ and /ta/ (blocks 1, 2) are removed, the sound
is robustly perceived as /pa/. Boosting the low-frequency burst
within 0.5 and 0.7 kHz (block 3) strengthens the initial aspira-
tion and turns the sound into a clearly articulated /pa/ [Fig. 2(d)]
(which may not be primed).

An interesting question about this example is: why do people
hear /ka/ rather than /ta/ and /pa/? We conjecture that it is be-
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Fig. 3. Manipulation of voiced stop consonants /ba, da, ga/. (a) /ba/ from talker
ml11 morphs into /ga/ when the /ba/ cue in block 1 is replaced by a /ga/ cue
in block 2. [Example: ba2ga] (b) /da/ from talker f103 is heard as a natural
/gal, after removing the high-frequency burst (block 1)and boosting the mid-fre-
quency burst (block 1) by a factor of 5 (14 dB). [Example: da2ga] (c) Removal
of the mid-frequency burst (block 1) causes the original sound /ga/ from talker
f103 to morph into a /da/. Boosting the high-frequency burst (block 2) makes
the sound a clear /da/. [Example: ga2da]. (1 ¢s = 0.01 s). (a) /ba/ — /ga/
(b) /da/— /ga/ (c) /ga/— /dal.

cause of the 1.4 kHz burst, which triggers the /ka/ report, ren-
ders the /ta/ and /pa/ bursts inaudible, possibly due to the up-
ward-spread of masking or some neural signal processing mech-
anism.

An important implication of this example (Fig. 2) is that the
F2 transition for /ka/ seems unnecessary for the discrimination
of unvoiced stop consonants, contradictory to a widely accepted
argument that the F2 transition is critical for the recognition of
stop consonants [16], [12].

The group of voiced stop consonants /ba, da, ga/ and the un-
voiced stop consonants /pa, ta, ga/ have similar feature patterns,
with the main difference being the delay between the voicing
(i.e., the burst release and the start of the sonorant portion of the
speech sound). We shall next show how the voiced stops /ba, da,
ga/ can be modified, again through speech cue manipulations.

Fig. 3(a) depicts the Al-gram of /ba/ from talker m111 at
12-dB SNR with white noise, which is perceived robustly by the
listeners as a /ba/ above 12-dB SNR. After removing the percep-
tual cue for /ba/ (block 1) and boosting the mid-frequency burst
(block 2) by a factor of 4 (12 dB), the speech sample is trans-
formed into a noise-robust /ga/. Fig. 3(b) shows the Al-gram
of /da/ from talker f103 at 14-dB SNR with white noise, which
contains a typical high-frequency /da/ burst (block 1) and a con-
flicting mid-frequency /ga/ burst (block 2). Just as in Fig. 2
where /ka/ is converted to /ta/ or /pa/, the /da/ sound may be con-
verted into a /ga/ by removing the high-frequency burst (block
1) and scaling up the lower frequency burst (block 2) to create
a fully audible mid-frequency burst.

Al-gram of {103sha at 12 dB SNR Al-gram of {103fa at 12 dB SNR (SWN)
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Fig. 4. Manipulation of fricatives /[a, fa/_ (a) the original sound /J&/ from talker
f103 is converted into a /sa/ when the bandwidth of the noise-like cue is cut
from 24 kHz (removing block 1); it turns into a /fa/ when the duration is short-
ened from its natural duration of 15 cs (from 13-28 cs) down to 6 cs (from
22-28 cs) (removing block 2), combining the two processes (removing block 1
and 2) turns the sound into a /za/; Finally when all three blocks are taken out,
the sound is heard as a /da/, and boosting the high-frequency residual (block
4) makes the /da/ clearer. [Example: Sa2cha2sa2za2Da] (b) the original
sound /fa/ from talker f103 turns into a /ba/ when the whole fricative cue (high-

lighted by the blue box) is deleted. [Example: fa2ba. (1 cs = 0.01 s). (a)
/Jal — /sal — /{fal — /zal — [Ba/ (b) /fa/ — /bal.

The reverse conversion (from /ga/ to /da/) is illustrated in
Fig. 3(c). After removing the mid-frequency /ga/ cue (block 1),
the listeners robustly report /da/. This final modification, for
some SNR conditions (when the mid-frequency boost is re-
moved and there is insufficient high-frequency residual energy
for the labeling of a /da/), requires a 12-dB boost of the 4-kHz
region to robustly convert the sound to /da/.

2) Fricatives: The fricatives are characterized by a wide-
band noise-like cue with varied duration and bandwidth [48].
Truncating the speech cues in bandwidth and duration, we can
also morph the fricatives from one into the other. Starting with
/fa/ from talker f103 [Fig. 4(a)], the original sound is heard by all
listeners as a solid /Ja/. In the figure, the perceptual cue ranges
from 13-28 cs in time and about 2—8 kHz in frequency. Cutting
the bandwidth in half (remove block 1) morphs the sound into a
robust /sa/. Shrinking the duration by 2/3 (remove block 2) trans-
forms the sound into a/§a/. Combining both processing (remove
block 1 and 2) causes most listeners to report /za/. Removing
the whole noise patch (remove block 1, 2 and 3) results in /3a/,
which can be made robust by amplifying the residual high-fre-
quency burst (highlighted in block 4). In each case, the modified
speech is naturally sounding.

Consonants /fa/ and /va/ are highly confused with /ba/ when
the fricative sections of the two sounds are masked. Fig. 4(b)
shows an example of a /fa/—/ba/ conversion. The original sound
is a /fa/ from talker f103. When the entire fricative section is
removed, it morphs into a robust /ba/.

3) Nasals: The two nasals /ma/ and /na/ share the common
feature of a nasal murmur and differ from each other in the shape
of F2 transition; specifically, /na/ has a prominent downward F2
transition while /ma/ does not. This is because the length of the
vocal tract increases with /na/ as the tongue comes off the roof
of the mouth, but stays the same length as the lips part; while for
/ma/, the tongue remains on the floor of the mouth. Fig. 5 shows
an example of /na/—/ma/ conversion. The original sound is a
/na/ from talker £103; when the salient F2 transition is removed,
it turns into a /ma/ for which some listeners can still prime /na/.
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Fig.5. Al-gram of /na/ from talker f103. Removing the downward F2 transition
turns the /na/ into a /ma/. [Example: na2ma]. (1 cs = 0.01 s).

We have found that it is not always possible to manipulate the
speech cue and turn a /ma/ into a convincing /na/, or vice versa,
because the overall spectral patterns of the two sounds are quite
different.

The very low-frequency “nasal murmur” though clearly au-
dible does not seem to be a noise-robust cue used by listeners to
label a sound as “nasal.”

C. Words

A major difference between words and nonsense syllables is
that words are meaningful. The semantic constraint can have
a major impact on the perceptual integration of speech cues.
Some researchers, especially those with linguistic background,
do not believe that invariant cues exist for words and sentences.
They seem to claim that speech perception is more about the
interpretation of context information, rather than the detection
and integration of perceptual cues.

In the previous section, we showed that the percept of non-
sense CV syllables can be changed through the manipulation of
speech cues. A key question is: Does the same technique apply
to words or sentences containing coarticulation and context?
To explore this question, we have chosen several words from
our speech database and applied our speech-feature modifica-
tion method. Fig. 6 shows two such examples, the words /take/
and /peach/, extracted from a sentence. As we see in Fig. 6(a), /t/
and /k/ are characterized respectively by a high-frequency burst
at the beginning and a mid-frequency burst in the end. Switching
the time location of the two cues turns the verb fake into a per-
ceived noun Kate. In Fig. 6(b), once the duration between the /p/
burst and the onset of sonorance is removed, /peach/ is reported
as /beach/.

D. Sentences

The same technique of feature-based speech modification
works for natural meaningful sentences, as shown in Fig. 7.
Here we see the Al-gram of the sentence /she had your dark
suit/ at 14-dB SNR (with phones labeled at the top). Removing
the fricative cue around ¢ = 20 cs (delete block 1 and 2) morphs
the word /she/ into a /he/. Notice that the upper part of the /f&/ at
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Al-gram of /take/ at 14 dB SNR Al-gram of /peach/ at 14 dB SNR

——

Frequency [kHz]
Frequency [kHz]
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Fig. 6. Manipulation of words extracted from continuous speech. (a) a word
/take/ morphs into /kate/ when the high-frequency /t/ cue is switched with the
mid-frequency /k/ cue. [Example: take2kate] (b) a word /peach/ turns into
/beach/ when the duration between the /p/ burst and the onset of sonorance is
reduced from 60 to 0 ms. [Example: peach2beach]. (1 cs = 0.01 s). (a)
/take/ — /kate/ (b) /peach/ — /beach/.

4-8 kHz (block 1) can then be used as the perceptual cue for an
/s/; shifting it from ¢ = 20 cs to ¢ = 55 cs causes the word /had/
to morph to /has/. Next, we move the mid-frequency /k/ burst
in the word /dark/ upward to 4 kHz, which converts the word
/dark/ into /dart/. Finally, we change the /s/ cue in the word
/suit/ to be a /J cue by shifting it downward from 4-8 kHz to
2—-4 kHz, morphs /suit/ into /shoot/. Thus, the modified sentence
has become /he has your dart shoot/. It is relatively easy to
change the percept of most sounds once the consonant cues
have been identified. Interestingly, meaningful sentences may
easily be morphed into nonsense by modifying a single event.
For example, we can turn the /d/ in /dark/ to a /b/ by zeroing out
the frequency component above 1.4 kHz from 75 cs to 85 cs.
The whole sentence then becomes /she has your bark suit/.

The above examples of sentence modification clearly indi-
cate that speech perception is critically dependent on specific
speech cues. Context information becomes useful once the lis-
tener has decoded the speech cues. Specifically, while primes
may be resolved by context, robust cues are not overpowered
by such redundancy rendering context cues. A sentence may
be described as having key words and accessory words. Sim-
ilarly, the acoustic cues of continuous speech may be classified
into two types: critical and accessory cues. The critical cues
are defined as the irreplaceable units that are critical for per-
ception of the sentence; the accessory cues refer to the redun-
dant units recoverable from the critical cues and the associated
context information.

Given a priori knowledge of perceptual cues, we have learned
how to control the decoding of natural speech through the ma-
nipulation of speech cues in CV syllables, words, and sentences.
This new understanding points to the feasibility of feature-based
speech processing. In the next section, we will show that speech
sounds can be made more robust to noise by manipulating the
speech cues.

IV. INTELLIGIBILITY OF CONSONANTS IN NOISE

We have demonstrated that speech perception is critically de-
pendent on the detection of perceptual cues. When the dominant
cue that defines a consonant is masked by noise under adversary
environments, the conflicting cue may take effect and cause the
listeners to report another consonant. The robustness of a con-
sonant sound is determined by the strength of the dominant cue
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Fig. 7. Manipulation of speech cues converts a TIMIT sentence /she had your dark suit/ into a meaningful new sentence /he has your dart shoot/. Step 1: convert
/she/ into /he/ by removing the fricative part of /she/ (delete block 1 and 2); Step 2: to convert /had/ into /has/, a /s/ feature is created after /had/ by shifting the
upper half of /fal feature (block 1) to ¢ = 55 cs. Step 3: convert /dark/ into /dart/ by shifting the mid-frequency burst (block 3) upward. Step 4: convert /suit/ into
a /shoot/ by shifting the /s/ cue (block 4) downward to 2—4 kHz. [Example: she had_your_dark_suit]. (1 cs = 0.01 s).

TABLE I
CONFUSION MATRIX OF SPEECH PERCEPTION TEST ON STOP CONSONANTS

-9 dB SNR (SWN) -3 dB SNR (SWN)
pa ta ka ba da ga | pa ta ka ba da ga
pa 19 7 1 6 5 1 46 1 2 5

ta 3 4 2 2 1 51 2 1

ka 12 8 13 3 5 3 6 3 3 4 1
ka¢xo 22 .5 4 5 3 22 4 16 4 1 5
ka¢xo, kx2 7 2 14 2 1 6 6 1 42 1 4
ka¢x0, kx4 3 1 27 1 2 9 4 2 4 1 4
ba 4 1 3 8 7 5 8 1 31 6 1

da 5 11 2 325 1 1 1 1 1 44 3

ga 4 2 8 7 16 12 2 3 2 1 16 26
gadxo 4 3 2 8 4 16 1 8 8 33
9adx0, gx2 1 1 11 310 20 1 5 4
92 dx0, gx4 1 9 4 3 26 1 5 48

# t,d X 0 means removing the interfering /ta/ or /da/ cue; k, g X N means amplifying /ka/ or /ga/ cue by a gain factor of N. The number of correct
responses for /ka, ga/ and the number of confused responses, including both /ka/—/ta/ and /ga/—/da/, are in bold font.

ga y

) !
1

1

g

28 Sl Interfering

2 /da/ cue

—

s!
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hal cue

Igal cue

Frequency [kHz]
Frequency [kHz]
b

Time [cs]

(a)

Time [cs]

(b)

Fig. 8. Enhanced /ka/’s and /ga/’s were created by removing the high-fre-
quency conflicting cues (dashed boxes) to promote /ta/—/ka/ responses and
/ga/l—/da/ confusions, and then boosting the mid-frequency bursts, critical for
/ka/ and /ga/ identification. (1 cs = 0.01 s). (a) super /ka/ (b) super /ga/.

[55], [41]. To test the idea of improving speech intelligibility in
noise by manipulating the speech cues, we conducted a small
speech perception experiment on stop consonants /ka/ and /ga/
containing high-frequency conflicting cues for /ta/ and /da/. In
order to improve the noise-robustness, and reduce the “bias”
toward /ta/ and /da/, the utterances were modified so that the
high-frequency conflicting cue was removed and the mid-fre-
quency perceptual cue was amplified, as depicted in Fig. 8.

A. Methods

The speech stimuli include /pa, ta, ka, ba, da, ga/ and sev-
eral enhanced “super” /ka/’s and “super” /ga/’s having the
mid-frequency /ka/ and /ga/ cue amplified by 1 (0-dB gain),
2 (6-dB gain) and 4 (12-dB gain), respectively. The speech
stimuli were chosen from the University of Pennsylvania’s
Linguistic Data Consortium (LDC) LDC2005S22 “Articulation
Index Corpus” such that each nonsense CV syllable has six
talkers, half male and half female. The speech stimuli were
presented to both ears simultaneously under two SNR con-
ditions, —9 and —3 dB SNR, using speech-weighted noise
(SWN). The speech tokens were fully randomized across
talkers, conditions, and consonants. Three normal hearing
college students (male, age < 30) participated in the study.
All subjects were born in the U.S. with English being their
first language. Each token (utterancex SNR) was presented
to each subject 18 times. A Matlab program controlled the
procedure. Speech stimuli were presented to the listeners
through Sennheisser HD 280-pro headphones. Following each
presentation, subjects responded to the stimulus by clicking
on the button labeled with the CV among sixteen choices
/pa, ta, ka, fa, 0a, sa, [a, ba, da, ga,va, 0a, za, 3a, ma, na/, Ip
the case that the speech was totally unintelligible due to the
noise, the subject was instructed to click a “Noise Only” button.
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The speech stimuli were played at the most comfortable level
(MCL) of the listeners, which was around 70-dB SPL.

B. Results

Results of the speech perception experiment indicate that
boosting the mid-frequency /ka/ and /ga/ cue significantly
increases the recognition scores in noise. Table I shows the
confusion matrix of the speech test. Each row of the table rep-
resents the number of responses reported by the listeners when
the sound on the left-most column is presented. At —9-dB SNR,
removing the interfering high frequency cue from /ka/ reduces
the /ta/ confusion from 8 (row 3, col 2) to 5 (row 4, col 2).
However, due to the existence of a low-frequency burst below 1
kHz (indicative of /pa/), most subjects report the sound as a /pa/;
hence, it also reduces the number of correct responses from 13
(row 3, col 3) to 4 (row 4, col 3). Enhancing the mid-frequency
cue for the target sound by 12 dB increases the number of
correct responses from 13 (row 3, col 3) for the original sound
/ka/ to 27 (row 6, col 3) for the modified sound ka;y g,k x4;
Similar results are observed for /ga/, for which the number of
correct responses is 12 (row 9, col 6) for the original sound
versus 27 (row 12, col 6) for the enhanced sound 92dxo0, gx4,
When the SNR increases from —9 to —3 dB, the advantage of
feature manipulation is still large for /ga/ with the number of
correct responses being 26 (row 9, col 12) for the original sound
versus 48 (row 12, col 12) for the enhanced sound (9adxo, gx4);
the benefit of speech enhancement becomes minimal for /ka/ as
the performance saturates.

V. SUMMARY AND DISCUSSION

In order to identify the delicate features that characterize
human speech perception, it is necessary to have a direct way
of determining the cues from natural speech. Using the com-
bined approach of Al-gram to predict speech audibility and
3DDS to measure the contribution of sub-speech component
to perception, we have identified the perceptual cues for many
initial consonants [7]. Based on this prior knowledge of the
perceptual cues for natural speech [7], [48], [42], we have
proposed a method for manipulating consonant sounds in the
time—frequency domain and demonstrated the feasibility of
feature-based speech processing. The following summarizes
our major findings.

* Speech perception critically depends on the reception of
perceptual cues. Through the manipulation of the con-
flicting cues, most often a tiny spot on the spectrogram,
the target sound can be convincingly converted into a com-
peting sound, as demonstrated by the selected examples
in this paper.

* A speech sound can be made more robust to noise by
boosting the defining speech cue, or the perceptual confu-
sions can be reduced by removing the conflicting cue, di-
rectly demonstrating the potential of feature-based speech
processing.

* The success of feature-based speech processing is largely
dependent on the accuracy of identified speech cues. A
slight change in a speech feature can lead to a huge dif-
ference in perception.
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In this paper, all the examples of speech modification are
created manually. A key element of a feature-based speech
processing system is the feature detector. As shown earlier,
these features are time—frequency features, so time—frequency
detection and estimation theory may provide a method for
automating this task. An early study [23] identified the formal
connections between detection theory and quadratic (mag-
nitude-based) time—frequency representations. Sayeed and
Jones [57] discovered how to design such optimal detectors
directly from training data as well as how to implement optimal
approximations very efficiently using spectrograms. A recent
study by Kim et al. [38] derived a method of calculating the
reliability of each time—frequency region from clean speech
signal. Despite these progresses, automating the detection of
features from noisy speech remains a challenge.
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